Light regulated development in plants

Clark Lagarias (Molecular & Cellular Biology) Julin Maloof (Plant Biology) UC Davis

Talk Outline

• Light control of Plant Development

• Photoreceptors

Signaling Mechanisms

For plants: Light = Food

Animals can walk to better foraging

Plants must grow to better foraging

As a consequence, plant development is extensively regulated by the environment

Plants monitor many aspects of their light environment in real time

- Intensity
- Color (also known as "quality")
- Direction
- Duration

Seed plants require light for the synthesis of chlorophyll ... and for photosynthesis.

Action Spectroscopy: effectiveness of different wavelengths of light to support a biological response

Okazaki Large Spectrograph

- Seed Germination
 - Light induces germination
 - Red (R) promotes germination
 - Far-red (FR) inhibits germination
 - Depends on seed size

Adapted from Borthwick *et al*, 1952

- Seed Germination
- Seedling Emergence
 - Light is a cue for seedling emergence
 - In the dark seedlings show **etiolated** growth:

- Seed Germination
- Seedling Emergence
- Direction of growth (phototropism)

Courtesy of Takatoshi Kagawa http://www.agbi.tsukuba.ac.jp/~k-lab/tropism/stem.html

Courtesy of Roger Hangarter: http://plantsinmotion.bio.indiana.edu

- Seed Germination
- Seedling Emergence
- Direction of growth (phototropism)
- Chloroplast arrangement within cells

Sakai et al PNAS 2001

- Seed Germination
- Seedling Emergence
- Direction of growth (phototropism)
- Chloroplast arrangement
- Amount of growth
 - stem and petiole elongation
- Resource allocation
 - amount of carbon to leaves, roots, shoot, seed, fruit.
 - therefore affects extent of organ development
 - defense vs. growth paradigm

Light quality signals neighbor proximity (Shade avoidance)

- Seed Germination
- Seedling Emergence
- Direction of growth (phototropism)
- Chloroplast arrangement
- Amount of growth
- Resource allocation
- Flowering time
 - Many plants use light to determine daylength and thereby seasonality
 - Long day plants are induced to flower when days are longer than a critical threshold
 - Short day plants are induced to flower when days are shorter than a critical threshold

Take Home Message

Plant development is strongly affected by the light environment.

Genetic Screens for Light Signaling Mutants

• *hy (elongated hypocotyl)* mutants have tall hypocotyls in the light

From Chory *et al*, 1989 Based on earlier work of Martin Koorneef

• *cop* (*constitutively photomorphogenic*) and *det* (*de-etiolated*) mutants are de-etiolated even in the dark.

Genetic Screens for Light Signaling Mutants

- *hy (elongated hypocotyl)* loci are mostly photoreceptor mutants
- HY1 & HY2 encode enzymes of phytochrome chromophore
- HY3 encodes phytochrome B
- HY4 encodes cryptochrome
- HY5 encodes MYB transcription factor (promotes light-reg'd genes)
- HY8 encodes phytochrome A
- *cop* and *det* mutants are repressors of photomorphogenesis.
- COP1 & DET1 regulate protein degradation in darkness
- Other COP/FUS loci are components of the proteosome
- DET2 involved in brassinosteroid metabolism (and growth regulation)
- DET3 involved in vacuolar H+-ATPase (and growth regulation)

Photomorphogenesis: Integration of light signal perception by multiple photoreceptors

Flavin-based photosensors are widespread in plants and mediate blue light responses (PHOT/CRY/ZTL/FKF)

Phototropism in seedlings (first described by Darwin)

<- blue light

<- blue light (no phototropin)

flavin chromophore

Phototropism, chloroplast movement & stomata opening are <u>all</u> mediated by phototropins, Phot1 and Phot2

PHOT1 mediates the low fluence response

PHOT2 mediates the high fluence response

Briggs & Christie 2002 TIPS 7, 204-210

Bilin-based phytochromes detect shade by measuring the red/far-red ratio (PHY)

Take Home Message

Plant development is strongly affected by the light environment.

In addition to the photosynthetic apparatus, plants possess a wide variety of flavin- and bilin-based photoreceptors that sense light color, intensity, direction and duration of exposure to regulate both growth and development.

Phytochrome Modes of Action

Although important, phytochromes are non-essential ...

... but, plant growth and development is severely impaired. Hu et al, 2013 PNAS

Arrested plant development in darkness is overcome by phytochrome activation.

Constitutive phytochrome alleles permit plant development in the absence of light.

Su & Lagarias 2007 Plant Cell

Phytochromes regulate >10% of the plant transcriptome...

... in a manner independent of photosynthesis.

Hu, Su & Lagarias, 2009 Mol. Plant

Some Take Home Messages

Plant development is strongly affected by the light environment.

In addition to the photosynthetic apparatus, plants possess a wide variety of flavin- and bilin-based photoreceptors that sense light color, intensity, direction and duration of exposure to regulate both growth and development.

Such regulators are non-essential for survival in controlled light environments, but are essential for successful competition with other plants for survival in a fluctuating diurnal light environment.

Crosstalk between photoreceptors

Fraser et al 2016 Curr. Opin. Plant Biol.

Crosstalk between photoreceptors

Brian Thomas 2006 JXB

Some Take Home Messages

Plant development is strongly affected by the light environment.

In addition to the photosynthetic apparatus, plants possess a wide variety of flavin- and bilin-based photoreceptors that sense light color, intensity, direction and duration of exposure to regulate both growth and development.

Such regulators are non-essential for survival in controlled light environments, but are essential for successful competition with other plants for survival in a fluctuating diurnal light environment.

These photoreceptors have overlapping and distinct signaling pathways which regulate development in a wide variety of light environments.