

Microbials

Impact on agriculture and the seed industry

Marcus Meadows-Smith

BioConsortia, Inc.

Seed Central, UC Davis, 9 February 2017

Agenda

- 1) Introduction to Microbials
- 2) Agrinos
- 3) UC Davis
- 4) Novozymes

- Dr. Mylavarapu Venkatramesh, VP Discovery Research

- Marcus Meadows-Smith, CEO, BioConsortia

- Dr. Venkatesan Sundaresan Professor, Plant Biology & Plant Sciences
- Dr. Matthew DiLeo, Application Development Group Leader
- 4) Bayer CropSciences Dr. Varghese P. Thomas, Principal Scientist, Microbiology & Crop Efficiency, Biologics

Microbials - why should you be interested?

Impact on and Opportunities for the <u>Seed</u> Industry:

#1 selling seed treatment in the USA contains a microbe - PonchoVotivo from Bayer CropScience

Monsanto spends \$50million on microbial R&D field testing 2,000 microbes per year - adding microbial seed treatment to <u>all</u> new 2017 corn hybrids

New microbial on 50,000 acres cotton demonstrated an **11% yield** increase - Indigo Cotton – improving yields under water stressed conditions

Microbes can impact almost <u>any trait</u> on most crops - BioConsortia's AMS process has demonstrated increase in % sugar content

Historic Market

Perceptions

- Less effective
- Inconsistent
- Hard to use

Microbials Synthetic pesticides

Limited Markets

- Organic food
- Residue management on F&V
- Dominated by small companies
- Bt the only significant product

Yield Effect - Microbial Seed Treatment

Growing Understanding – Microbes & Microbiome

"People are not just people. They are an awful lot of microbes too."

Other industries have helped to underwrite advancements in ag sector:

- Genome sequencing
- Big data management modeling
- Systems Biology
- Microbiome / community analysis
- Metagenomics
- Transcriptomics (RNA of community)
- Proteomics (protein expression)
- Pharmaceuticals
- Industrial Biotech

Benefit plants by providing:

- Access to macro and micronutrients
- Pathogen and pest resistance
- Plant growth hormones
- Stress protection

Modify plant functions:

- Structure and growth
- Metabolite production

Harmful to plants:

- Pathogens
 - Growth suppression

Drivers for growth & adoption

Macro Drivers

- Pesticide residues
- Resistance Management
- Fertilizer run-off & leaching
- Regulatory pressures/Delisting of many Pesticides
- Climate volatility: droughts, flooding
- "Green" pressure from Food Value Chain & consumers

Other Key Factors

- R&D costs for synthetic pesticides
 - Synthetic > \$ 230 million, 8-10 years
 - <u>GM Trait</u> \$ 130 million, 12-14 years
 - Biopesticide \$25 million, 5-6 years
- Mind set change in Ag leadership
- Enhanced credibility
- Superior products

Industry 2008 ... 100's small players

Focus & Investment in Microbials

Market Growth

Projected CAGR of 15.3% reaching \$4.5 Billion by 2019

Advanced Microbial Selection (AMS)

Directed selection of the microbiome to identify teams of beneficial microbes

Selection of superior plants Plant phenotyping used to identify superior plants and potentially beneficial microbiomes **Evolving the microbiome** *Iterative selection and advancement of beneficial microbiomes from superior plants* Improving plant trait performance Isolation of microbes and construction of key consortia from superior plant microbiomes

Soil vs Seedling Microbiome

Seedlings accumulate a different microbial community structure than that present in the soil

Directed Selection

Evolving the Microbiome

AMS Driving Trait Improvement

AMS Driving Trait Improvement

Improved Trait Performance

Soybean

Wheat

Tomato

Pasture

Fertilizer Use Efficiency

N, P, K

Abiotic Stress Tolerance

Drought & Salt Tolerance, Cold & Wet Tolerance

Biotic Stress Tolerance

Corn Root Worm, Nematodes, Soil and Early Season Pests & Disease

Metabolite Expression

Increased Sugar Content

Productivity Emergence, Early Vigor, Root and Foliar biomass

Crop Yield

GM & Conventional Crops